Part Number Hot Search : 
LT1270A 636S6C 1415CUE LC7980 MJD31 29LV320 A6111 9516L25
Product Description
Full Text Search
 

To Download TLE4470 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Dual Low-Drop Voltage Regulator
TLE 4470
Features * * * * * * * * * * * * * Stand-by output 180 mA; 5 V 2 % Adjustable reset switching threshold Main output 350 mA; tracked to the stand-by output Low quiescent current consumption in standby mode Disable function for main output Wide operation range: up to 45 V Very low dropout Power-On-Reset circuit sensing the stand-by voltage Early warning comparator for supply undervoltage Output protected against short circuit Wide temperature range: - 40 C to 150 C Over-temperature protection Over-load protection
P-DSO-14-4
P-DSO-20-6
Type TLE 4470 GS TLE 4470 G Functional Description
Ordering Code Q67006-A9309 Q67006-A9308
Package P-DSO-14-4 (SMD) P-DSO-20-6 (SMD)
The TLE 4470 is a monolithic integrated voltage regulator with two very low-drop outputs, a main output Q2 for loads up to 350 mA and a stand by output Q1 providing a maximum of 180 mA. The device is available in both the P-DSO-14-4 and P-DSO-20-6 packages. It is designed to supply microprocessor systems under the severe conditions of automotive applications and is therefore equipped with additional protection functions against over load, short circuit and over temperature. Of course the TLE 4470 can also be used in other applications where two stabilized voltages are required. The device operates in the wide temperature range of - 40 C to 150 C. The stand by regulator transforms an input voltage VI in the range of 5.6 V VI 45 V to VQ1rated = 5 V within an accuracy of 2%, whereas the main regulator is adjustable. By use of an external voltage divider the main output voltage can be set to VQ2 5 V for the
Semiconductor Group 1 1998-11-01
TLE 4470
TLE 4470 G type (P-DSO-20-6 package). VQ1 is compared to the voltage at pin VA, which is proportional to the output voltage VQ2. A control amplifier drives the base of the series PNP transistor via a buffer. The main output voltage VQ2 is tracked to the accuracy of the stand by output. For the TLE 4470 GS (P-DSO-14-4 package) the output voltage is fixed to 5 V. To save energy e.g. in battery powered body electronic applications, the main regulator can be switched off via the disable input, which causes the current consumption to drop to 180 A typical. Two additional features of the TLE 4470 are an early warning comparator (can be used e.g. to monitor the supply voltage VI) and reset generator with an adjustable reset delay time. The TLE 4470 G (P-DSO-20-6 package) has in addition an adjustable reset switching threshold. This feature is useful with microprocessors which guarantee a safe operation down to voltages below the internally set reset threshold of 4.65 V typical. Two functions are included in the reset generator, a power on reset and an under-voltage reset. The power on reset feature is necessary for a defined start of the microprocessor when switching on the application. The reset LOW signal is generated for a certain delay time after the output voltage VQ1 of the regulator has surpassed the reset threshold. An external delay capacitor sets the delay time. The under voltage reset circuit supervises the stand-by output voltage. In case VQ1 falls below the reset switching threshold the reset output is set LOW after a short reaction time. The reset LOW signal is generated down to an output voltage VQ1 of 1 V. Pin Configuration (top view)
P-DSO-14-4
D DIS GND GND GND RQ SQ 1 2 3 4 5 6 7 14 13 12 11 10 9 8 SI
P-DSO-20-6
RADJ D DIS GND GND GND GND RQ SQ Q1 1 2 3 4 5 6 7 8 9 10 20 19 18 17 16 15 14 13 12 11 SI 1 2 GND GND GND GND Q2 Q2 ADJ2
AEP02151
GND GND GND Q2 Q1
AEP02152
Figure 1
Semiconductor Group 2 1998-11-01
TLE 4470
Pin Definitions and Functions P-DSO-20-6 Pin No. 1 Symbol RADJ Function Reset switching threshold adjust; for setting the reset switching threshold connect to a voltage divider from Q1 to GND. If this input is connected to GND, the reset is triggered at the internal threshold. Reset delay; connect a capacitor CD to GND for delay time adjustment Disable input main regulator; Q2 disabled with high signal Ground Reset output; the open collector output is connected to Q1 via an integrated 30 k resistor Sense output; the open collector output is connected to Q1 via an integrated 30 k resistor Stand-by regulator output voltage; block to GND with a capacitor CQ1 6 F, ESR < 10 at 10 kHz Main regulator adjust input; Q2 can be set to higher values by an external divider Main regulator output voltage; block to GND with a capacitor CQ2 10 F, ESR < 10 at 10 kHz Ground Main regulator input voltage; block to GND directly at the IC with a ceramic capacitor Stand-by regulator input voltage; block to GND directly at the IC with a ceramic capacitor Sense comparator input
2 3 4, 5, 6, 7 8 9 10 11 12, 13 14, 15, 16, 17 18 19 20
D DIS GND RQ SQ Q1 ADJ2 Q2 GND I2 I1 SI
Semiconductor Group
3
1998-11-01
TLE 4470
P-DSO-14-4 Pin No. 1 2 3, 4, 5 6 7 8 9 Symbol D DIS GND RQ SQ Q1 Q2 Function Reset delay; connect a capacitor CD to GND for delay time adjustment Disable input main regulator; Q2 disabled with high signal Ground Reset output; the open collector output is connected to Q1 via an integrated 30 k resistor Sense output; the open collector output is connected to Q1 via an integrated 30 k resistor Stand-by regulator output voltage; block to GND with a capacitor, CQ1 6 F, ESR < 10 at 10 kHz Main regulator output voltage; 5 V output tracking to Q1, block to GND with a capacitor CQ2 10 F, ESR < 10 at 10 kHz Ground Main and stand-by regulator input voltage; block to GND directly at the IC with a ceramic capacitor Sense comparator input
10, 11, 12 13 14 RADJ ADJ2
GND I SI
Reset switching threshold adjust not available in P-DSO-14-4 package. Reset is always triggered at the internal threshold. Main regulator adjust input is internally connected to VQ2
Semiconductor Group
4
1998-11-01
TLE 4470
1
19
10
Q1
Reference 18 3
Stand-by-Regulator 12, 13 11
2
DIS
V REF
Q2 ADJ2
Main Regulator
V REF
2
d
8 30 k V Q1 1 30 k 9
D RQ
= V RADJTH Reset
RADJ
SQ
SI
20 = Sense 4-7 14-17 GND
V SITH
Pin numbers valid for P-DSO-20-6 (TLE 4470 G)
AEB02153
Figure 2 Block Diagram
Semiconductor Group 5 1998-11-01
TLE 4470
Absolute Maximum Ratings - 40 C < Tj < 150 C Parameter Symbol Limit Values min. Stand-by Regulator Input Voltage VI1 Voltage Current max. Unit Remarks
VI1 II1
- 42 -
45 -
V mA
- Internally limited
Main Regulator Input Voltage VI2 Voltage Current Stand-by Output VQ1 Voltage Current Main Output VQ2 Voltage Current
VI2 II2
- 42 -
45 -
V mA
- Internally limited
VQ1 IQ1
-1 -
7 -
V mA
- Internally limited
VQ2 IQ2
-1 -
36 -
V mA
- Internally limited
Main Regulator Adjust Input ADJ2 Voltage Current Sense Output SQ Voltage Current Reset Output RQ Voltage Current
VADJ2 IADJ2
- 0.3 -
18 -
V mA
- Internally limited
VSQ ISQ
- 0.3 -5
25 5
V mA
- -
VRQ IRQ
- 0.3 -5
25 5
V mA
- -
Semiconductor Group
6
1998-11-01
TLE 4470
Absolute Maximum Ratings (cont'd) - 40 C < Tj < 150 C Parameter Symbol Limit Values min. Disable Input DIS Voltage Current Sense Input SI Voltage Current Reset Delay D Voltage Current max. Unit Remarks
VDIS IDIS
- 42 -2
45 2
V mA
- -
VSI ISI
- 25 -2
18 2
V mA
- -
VD ID
- 0.3 -2
7 2
V mA
- -
Reset Switching Threshold Adjust RADJ Voltage Current Temperatures Junction temperature Storage temperature
VRADJ IRADJ
- 0.3 -
7 -
V mA
- Internally limited
Tj Tstg
- 50 - 50
150 150
C C
- -
Note: ESD-Protection according to MIL Std. 883: 2 kV. Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to the integrated circuit.
Semiconductor Group
7
1998-11-01
TLE 4470
Operating Range Parameter Stand-by regulator input voltage Main regulator input voltage Stand-by regulator output current Main regulator output current Disable input voltage Sense input voltage Junction temperature Thermal Resistances Junction pin Junction ambient Symbol Limit Values min. max. 45 45 180 350 45 17 150 V V mA mA V V C - - - - - - - 5.6
VQnom + 0.6 V
Unit
Remarks
VI1 VI2 IQ1 IQ2 VDIS VSI Tj
0 0 - 0.3 - 0.3 - 40
Rthj-pin Rthj-a
- -
25 65
K/W K/W
Measured to pin 4 -
Note: In the operating range the functions given in the circuit description are fulfilled.
Semiconductor Group
8
1998-11-01
TLE 4470
Electrical Characteristics
VI1 = VI2 = 14 V; VDIS < VDISL; - 40 C < Tj < 150 C; unless otherwise specified
Parameter Symbol Limit Values min. Stand-by Regulator Output 1 Output voltage Output current limitation Output drop voltage; VDRQ1 = VI1 - VQ1 typ. max. Unit Test Condition
VQ1 IQ1 VDRQ1
4.90 180 -
5.0 280 300
5.10 - 500
V mA mV
1 mA < IQ1 < 100 mA see note 1
IQ1 = 100 mA; see note 1
Current Consumption Quiescent current; stand-by Iq = II1 - IQ1 Quiescent current Iq = II1 - IQ1
Iq
- -
180 180 4
250 300 6
A A mA
IQ1 = 300 A; Tj = 25 C VDIS > VDISH IQ1 = 300 A;
VDIS > VDISH
Iq
-
IQ1 = 100 mA
Regulator Performance Load regulation Load regulation Line regulation VQ1 VQ1 VQ1 - - - - 15 5 5 60 0.3 - - - 50 25 20 - - 5.5 - 10 mV mV mV dB 1 mA < IQ1 < 150 mA; 1 mA < IQ1 < 100 mA; IQ1 = 1 mA; 6 V < VI1 < 28 V 20 Hz < fr < 20 kHz; Vr = 5 VSS
Power-Supply-Ripple- PSRR Rejection Temperature output voltage drift dVI1/dt stability Value of output capacitance ESR of output capacitance
Semiconductor Group
VQ1/T -
mV/K - V F no reset occurs; note 3 - at 10 kHz
VQ1 CQ1 RESRQ1
4.5 6 -
9
1998-11-01
TLE 4470
Electrical Characteristics (cont'd)
VI1 = VI2 = 14 V; VDIS < VDISL; - 40 C < Tj < 150 C; unless otherwise specified
Parameter Symbol Limit Values min. Main-Regulator Output 2 Output voltage tracking accuracy Output voltage tracking accuracy Adjust input current Output current limitation Output drop voltage VDRQ2 = VI2 - VQ2 typ. max. Unit Test Condition
VQ2 - VQ1 - 25 VQ2 - VQ1 - 25
5 5
25 25
mV mV
5 mA < IQ2 < 100 mA; 6 V < VI2 < 40 V 5 mA < IQ2 < 250 mA; 7 V < VI2 < 28 V see note 2 - see note 1
IADJ2 IQ2 VDRQ2
-1 350 -
- 500 300
1 - 600
A mA mV
IQ2 = 200 mA; see note 1
Current Consumption Quiescent current; Iq = II - IQ Quiescent current; Iq = II - IQ
Iq Iq
- -
7 250
15 500
mA A
Tj = 25 C
IQ2 = 200 mA IQ1 = 300 A IQ2 = IQ1 = 300 A;
Regulator Performance Load regulation Line regulation VQ2 VQ2 - - - 5 5 60 0.5 - - 25 20 - - 5.5 - mV mV dB 5 mA < IQ2 < 200 mA; IQ2 = 5 mA; 6 V < VI2 < 28 V 20 Hz < fr < 20 kHz; Vr = 5 Vss
Power-Supply-Ripple- PSRR Rejection Temperature output voltage drift dVI2/dt stability Value of output capacitance
Semiconductor Group
VQ2/T -
mV/K - V F no reset occurs; note 2 -
VQ2 CQ2
4.5 10
10
1998-11-01
TLE 4470
Electrical Characteristics (cont'd)
VI1 = VI2 = 14 V; VDIS < VDISL; - 40 C < Tj < 150 C; unless otherwise specified
Parameter ESR of output capacitance Disable Input DIS H-input voltage threshold L-input voltage threshold H-input current L-input current Symbol Limit Values min. typ. - max. 10 at 10 kHz - Unit Test Condition
RESRQ2
VDISH VDISL IDISH IDISL
1.8 1.4 -2 -6
2.0 1.7 -1 -2
2.3 2.0 1 - 0.5
V V A A
- Output 2 active 2.3 V < VDIS < 7 V 0 V < VDIS < 1.4 V
Reset Timing D and Output RQ Reset switching threshold Reset adjust threshold Reset output low voltage Reset high voltage
VRT VRADJTH VRQL
4.5 1.25 -
4.65 1.35 0.15
4.8 1.45 0.3
V V V
RADJ connected to GND
VQ1 > 3.5 V RRQ = 10 k external connected to VQ1; VQ1 1 V
- Internal connected to VQ1
VRQH Reset pull up resistor RRQ Reset charging Id
current
4.5 20 3 1.5 0.3 12 -
- 30 5 1.8 0.4 15 0.5
- 45 9 2.2 0.55 20 2.0
V k A V V ms s
VD = 1 V
- -
Upper timing threshold Lower timing threshold Reset delay time Reset reaction time
VDU VDL td tRR
CD = 47 nF CD = 47 nF
Semiconductor Group
11
1998-11-01
TLE 4470
Electrical Characteristics (cont'd)
VI1 = VI2 = 14 V; VDIS < VDISL; - 40 C < Tj < 150 C; unless otherwise specified
Parameter Symbol Limit Values min. Sense Input SI and Output SQ Sense threshold voltage Sense threshold hysteresis Sense output low voltage Sense output high voltage typ. max. Unit Test Condition
VSITH VSIHY VSQL
1.28 25 -
1.35 60 0.15
1.45 100 0.4
V mV V
VSI decreasing
-
VSQH
4.5 20
- 30
- 45
V k
RSQ = 10 k external connected to VQ1 VSI = 1.1 V; VI1 > 4.5 V VSI > 1.5 V
Internal connected to VQ1
Sense pull up resistor RSQ
Note 1: Measured when the output voltage VQ has dropped 100 mV from the nominal value. Note 2: VQ2 connected to ADJ2 Note 3: Square wave at VI : 8 V to 18 V; f = 10 kHz; tr = tf 100 ns
Semiconductor Group
12
1998-11-01
TLE 4470
Application Information
VBatt
D1 1N4004
1 19
10 Q1
5V
C Q1 10 F
ZD1 C 36 V 100 nF Reference Stand-by-Regulator 12, 13 Q2 ( R 1= R 2 ) 10 V
C Q2 22 F
2 18
Control DIS 3
V REF
R1
11 ADJ2 Main Regulator
R SI1 330 k V REF
R2 CD 100 nF
d
2D 8 RQ 30 k V Q1 1
= V RADJTH Reset
RADJ
30 k 9 SQ 4-7 14-17 GND
SI 20
C SI R SI2 100 k 10 nF
= Sense
V SITH
Pin numbers valid for P-DSO-20-6 (TLE 4470 G)
AES02154
Figure 3 Application Circuit
Semiconductor Group
13
1998-11-01
TLE 4470
Input, Output The input capacitor CI is necessary for compensating line influences. Using a resistor of approx. 1 in series with CI, the LC circuit of input inductivity and input capacitance can be damped. To stabilize the regulation circuits of the stand-by and main regulator, output capacitors CQ1 and CQ2 are necessary. Stability is guaranteed at values CQ1 6 F & CQ2 10 F, both with an ESR 10 within the operating temperature range. For the TLE 4470 G (P-DSO-20-6) the output voltage VQ2 of the main regulator can be adjusted to 5 V VQ2rated 20 V by connecting an external voltage divider to the voltage adjust pin VA. For VQ2 = 5 V the voltage adjust pin has to be connected directly to the main output. For calculating VQ or R1 & R2 respectively the following equations can be used:
VQ = Vref x (R1 + R2) / R2
or R1 = R x (VQ / Vref) R2 = R x R1 / (R1 - R) Definitions:
R = R1 // R2 ; R 100 k Vref = Output voltage of stand by regulator, typical 5 V
Disable The main regulator of the TLE 4470 can be switched OFF by a voltage of 2.3 V at pin DIS. Reducing this voltage below 1.4 V will switch ON the main regulator again. Reset Timing The power-on reset delay time is defined by the charging time of an external capacitor Cd which can be calculated as follows:
Cd = (td x Id) / V
Definitions:
Cd = delay capacitor
td = delay time
Id = charge current, typical 5 A V = Vdt, typical 1.8 V Vdt = upper delay switching threshold at Cd for reset delay time The reset reaction time trr is the time it takes the voltage regulator to set the reset out
LOW after the output voltage has dropped below the reset threshold. It is typically 2 s for delay capacitor of 100 nF. For other values for Cd the reaction time can be estimated using the following equation:
trr 20 s/F x Cd
Semiconductor Group
14
1998-11-01
TLE 4470
V
< t RR
V RT VQ
dV d = dt C D
VDT VST
VD td t RR
V RO
Power-on-Reset Thermal Shutdown Voltage Dip at Input Undervoltage Secondary Spike Overload at Output
AED01542
Figure 4 Reset Timing Reset Switching Threshold The internally set reset threshold is 4.65 V. When using the TLE 4470 G (P-DSO-20-6) this threshold can be adjusted to 3.5 V < VRTH < 4.6 V by connecting an external voltage divider to pin RADJ. If this pin is not needed, it can be left open or even better connected to GND.
R1 = R2 x (VRT - Vref) / Vref
Definitions: (Reset adjust input current 50 nA)
VRT = Reset threshold Vref = comparator reference voltage, typical 1.35 V
The reset output pin is internally connected to the stand-by output Q1 via a 30 k pull-up resistor. The reset LOW signal at pin RQ in guaranteed down to an output voltage VQ1 of 1 V typical.
Semiconductor Group
15
1998-11-01
TLE 4470
VI1
30 k Band-Gap Reference 1.35 V Band-Gap Reference 1.35 V
_ <1
VQ1
RO
+ _ RADJ
R1
TLE 4470 G GND
R2
AES02505
Figure 5 Early Warning The early warning function compares a voltage defined by the user to an internal reference voltage. Therefore the voltage to be supervised has to be scaled down by an external voltage divider in order to compare it to internal sense threshold (reference voltage) which is typically 1.35 V. The sense out pin is set to low when the user defined voltage falls below this threshold. A typical example where this circuit can be used is to supervise the input voltage VI to give the microprocessor a prewarning of a low battery condition. Calculation of the voltage divider can be easily done since the sense input current can be neglected. To minimize transient influences the use of a capacitor in parallel to R2 is recommended. Like the reset output pin, the sense out pin SQ is internally connected to the stand-by output Q1 via a 30 k pull-up resistor. The sense out LOW signal at pin SQ is generated down to an input voltage VI1 of 3 V typical.
Semiconductor Group
16
1998-11-01
TLE 4470
Typical Performance Characteristics Drop Voltage Vdr versus Output 1 Current IQ1
600
AED02491
Output Voltage VQ1/VQ2 versus Output Current IQ1
6
AED02493
Vdr
mV 500
Vdr = VQnom -0.1 V VQ2 OFF
VQ1 / VQ2 V
5
T j = 25 C
400
4
VQ1
VQ2
300
3
200
T j = 125 C T j = 25 C T j = -40 C
2
100
1
0
0
0
50
100
150
200
mA 300
0
100
200
300
400 mA 500
Q1
Q1
Drop Voltage Vdr versus Output 2 Current IQ2
600
AED02492
Output 1 Voltage VQ1 versus Temperature Tj
5.2
AED02494
Vdr mV
500
Vdr = VQnom -0.1 V
VQ1
V 5.1
V = 13.5 V
400
5
300
4.9
200
4.8
T j = 125 C T j = 25 C T j = -40 C
0 50 100 150 200 mA 300
100
4.7
0
4.6 -40
0
40
80
120 C 160
Q2
Tj
Semiconductor Group
17
1998-11-01
TLE 4470
Output Voltage VQ1, VQ2 versus Input Voltage VI (VI1 = VI2)
6
AED02495
Current Consumption Iq versus Output 1 Current IQ1 (low load)
3000 q A
AED02497
VQ
V 5
V = VQ V Q1 / V Q2
2500
T j = 25 C V = 13.5 V VQ2 OFF
4
2000
3
1500
2
T j = 25 C Q1 = 10 mA Q2 = 10 mA VQ1nom = VQ2nom = 5 V
1000
1
500
0
0
2
4
6
8
V 10
0
0
10
20
30
mA 40
V
Q1
Current Consumption Iq versus Input Voltage VI
q mA
6
AED02496
Current Consumption Iq versus Output 1 Current IQ1 (high load)
q mA
30
AED02498
5
T j = 25 C Q1 < 1 mA Q2 = 10 mA
25
T j = 25 C V = 13.5 V VQ2 OFF
4
20
3
15
2
10
1
5
0
0
10
20
30
V 40
0
0
50
100
150
200 mA 250
V
Q1
Semiconductor Group
18
1998-11-01
TLE 4470
Current Consumption Iq versus Output 2 Current IQ2 (low load)
1800 q A 1500
AED02499
Reset Adjust Threshold VRADJTH versus Temperature Tj
1.6 V RADJTH V 1.5
AED02501
T j = 25 C V = 13.5 V Q1 = 0 mA
1200
1.4
900
1.3
600
1.2
300
1.1
0
0
10
20
30
40
mA 60
1.0 -40
0
40
80
120 C 160
Q2
Tj
Current Consumption Iq versus Output 2 Current IQ2 (high load)
q
30 mA 25
AED02500
Switching Voltage VDU, VDL versus Temperature Tj
VD
2,4 V 2.0
AED02502
V = 13,5 V
20
1.6
15
1.2
10
0.8
5
0.4
V DU
0
0
50
100
150
200
mA 300
0 -40
0
40
80
120 C 160
Q2
Tj
Semiconductor Group
19
1998-11-01
TLE 4470
Charge Current Id versus Temperature Tj
d A
8
AED02503
Sense Threshold VSITH versus Temperature Tj
1.6
AED02504
V = 13.5 V VD = 1 V
VSITH V
1.5
7
6
1.4
V = 13.5 V
1.3
5
4
1.2
3
1.1
2 -40
0
40
80
120 C 160
1 -40
0
40
80
120 C 160
Tj
Tj
Semiconductor Group
20
1998-11-01
TLE 4470
Package Outlines P-DSO-14-4 (Plastic Dual Small Outline)
0.35 x 45
1.75 max 1.45 -0.2
0.19 +0.06
0.2 -0.1
4 -0.2
1)
1.27 0.35 +0.15 2) 14 0.1 0.2 14x 6 0.2 8 0.4 +0.8
1 7 8.75 -0.21) Index Marking 1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Does not include dambar protrusion of 0.05 max. per side
GPS05093
Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book "Package Information". SMD = Surface Mounted Device Semiconductor Group 21
8 max.
Dimensions in mm 1998-11-01
TLE 4470
P-DSO-20-6 (Plastic Dual Small Outline)
2.65 max
0.35 x 45
2.45 -0.2
0.2 -0.1
1.27 0.35 +0.15 2) 20 0.2 24x 11 0.1
0.4 +0.8 10.3 0.3
GPS05094
1 12.8 1) 10 -0.2 Index Marking 1) Does not include plastic or metal protrusions of 0.15 max per side 2) Does not include dambar protrusion of 0.05 max per side
Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book "Package Information". SMD = Surface Mounted Device Semiconductor Group 22
0.23 +0.0 9 8 ma x
7.6 -0.2 1)
Dimensions in mm 1998-11-01


▲Up To Search▲   

 
Price & Availability of TLE4470

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X